参考:http://blog.csdn.net/xlinsist/article/details/51212348
引言
在运用一些机器学习算法的时候不可避免地要对数据进行特征缩放(feature scaling),比如:在随机梯度下降(stochastic gradient descent)算法中,特征缩放有时能提高算法的收敛速度。下面我会主要介绍一些特征缩放的方法。
什么是特征缩放
特征缩放是用来标准化数据特征的范围。
机器算法为什么要特征缩放
特征缩放还可以使机器学习算法工作的更好。比如在K近邻算法中,分类器主要是计算两点之间的欧几里得距离,如果一个特征比其它的特征有更大的范围值,那么距离将会被这个特征值所主导。因此每个特征应该被归一化,比如将取值范围处理为0到1之间。
就如我在引言所说,特征缩放也可以加快梯度收敛的速度。
特征缩放的一些方法
调节比例(Rescaling)
这种方法是将数据的特征缩放到[0,1]或[-1,1]之间。缩放到什么范围取决于数据的性质。对于这种方法的公式如下:
标准化(Standardization)
特征标准化使每个特征的值有零均值(zero-mean)和单位方差(unit-variance)。这个方法在机器学习地算法中被广泛地使用。例如:SVM,逻辑回归和神经网络。这个方法的公式如下:
- 其中delta为x的标准差
- 本文作者: Noisy
- 本文链接: http://Metatronxl.github.io/2018/09/16/特征缩放/
- 版权声明: 本博客所有文章除特别声明外,均采用 Apache License 2.0 许可协议。转载请注明出处!